TEX公式示例

-
-
2023-08-17

TeX/tɛx/,常被读作/tɛk/,音译“泰赫”,“泰克”,风格化后写作“TeX”),是一个由美国计算机科学教授高德纳(Donald Ervin Knuth)编写的排版软件。TeX的MIME类型application/x-tex,是一款自由软件。它在学术界特别是数学物理学计算机科学界十分流行。TEX被普遍认为是一个优秀的排版工具,尤其是对于复杂数学符号的处理。利用LaTeX等终端软件,TeX就能够排版出精美的文本以帮助人们辨认和查找。

TEX公式过于繁多,为方便使用我把一些可能用到的列举到下面,不同的TEX解释器的支持可能不同,有些可能在特定的解释器无法解析。这里以我笔记Trilium内嵌的CKEditor5编辑器支持的为主。

测试工具:wiris.net

 

示例

\overset{
		{}_\iota^\kappa 
		F_\mu^\lambda}
{\underset{
		{}_\phi^\chi 
		E_\omega^\psi
	}{
		{}_{{}_\alpha^\beta
		C_\delta^\gamma}^{{}_\varepsilon^\zeta
		D_\theta^\eta
	}\prod\nolimits_{{}_\rho^\sigma 
		A_\upsilon^\tau}^{{}_\nu^\xi 
		B_\pi^o}
	}
}
\(\overset{{}_\iota^\kappa F_\mu^\lambda}{\underset{{}_\phi^\chi E_\omega^\psi}{{}_{{}_\alpha^\beta C_\delta^\gamma}^{{}_\varepsilon^\zeta D_\theta^\eta}\prod\nolimits_{{}_\rho^\sigma A_\upsilon^\tau}^{{}_\nu^\xi B_\pi^o}}}\)
\mathop{正文}\limits_{下文}\(\mathop{正文}\limits_{下文}\)
\frac{a}{b}\(\frac{a}{b}\)
\begin{array}{ccc}
	0 & \leftarrow & 3\\
	\downarrow &
		\begin{array}{cc}&\\
		&\end{array}\;
	&\uparrow\\
	1 &\rightarrow & 2
\end{array}\\
\(\begin{array}{ccc}0&\leftarrow&3\\\downarrow&\begin{array}{cc}&\\&\end{array}\;&\uparrow\\1&\rightarrow&2\end{array}\\\)
\sqrt[3]8+\sqrt[n]2+\sqrt[2p]x\(\sqrt[3]8+\sqrt[n]2+\sqrt[2p]x\)
\frac{f\circ g}{f\circ h}\;
\frac1{\sqrt2}\;\frac{x_j}{x^t}\;
\frac{\underline x}{\overrightarrow x}\;
\frac1{\overrightarrow k}\;
\frac1{2.\overset\frown3}
\(\frac{f\circ g}{f\circ h}\;\frac1{\sqrt2}\;\frac{x_j}{x^t}\;\frac{\underline x}{\overrightarrow x}\;\frac1{\overrightarrow k}\;\frac1{2.\overset\frown3}\)
\underbrace{
	f(x)
}_{y=x^2}
\circ
\overbrace{
	g(x)
}^{y=a_j}\;\;
\(\underbrace{f(x)}_{y=x^2}\circ\overbrace{g(x)}^{y=a_j}\;\;\)
\boxed{
	{\xcancel2}
	^{\boxed{\bcancel{5}}}
	_{\boxed{\cancel4}}
}
\(\boxed{{\xcancel2}^{\boxed{\bcancel{5}}}_{\boxed{\cancel4}}}\)

各种括号

大括号显示

左对齐
\left\{
	 \begin{array}{lr}
	 	 x-a,& \\
	 	 y=s,& \\
	 	 z=e 
	 \end{array} 
\right.
\(\left\{ \begin{array}{lr} x-a,& \\ y=s,& \\ z=e \end{array} \right.\)
居中
\left\{ 
	\begin{array}{rcl} 
		a & \\
		a \\
		A \\
		as 
	\end{array} 
\right.
\(\left\{ \begin{array}{rcl} a & \\a \\A \\as \end{array} \right.\)
右对齐
\left\{ 
	\begin{array}{r} 
		aaa&\\ 
		B \\ 
		sssssss
	\end{array} 
\right.
\(\left\{ \begin{array}{r} aaa&\\ B \\ sssssss\end{array} \right.\)

大括号三种写法

\left\{  
	\begin{aligned} 
		a &=cc \\ 
		abcd &=aaa \\ 
		B &= \frac xy 
	\end{aligned}  
\right.
\(\left\{  \begin{aligned} a &=cc \\ abcd &=aaa \\ B &= \frac xy \end{aligned}  \right.\)
\left\{ 
	\begin{array}{lcr} 
		&x &-&a \\ 
		&y&=&sss \\
		&z&=&e 
	\end{array} 
\right.
\(\left\{ \begin{array}{lcr} &x &-&a \\ &y&=&sss \\&z&=&e \end{array} \right.\)
\begin{cases} 
	&a& =&a \\
	&bb&=&aa \\
	&cc&=&ccc 
\end{cases}
\(\begin{cases} &a& =&a \\&bb&=&aa \\&cc&=&ccc \end{cases}\)

函数、符号及特殊字符

对错号

\chackmark\(\checkmark\)
\Times\(\times\)

声调 / 变音符号

 

\dot{a}\(\dot{a}\)
\ddot{a}\(\ddot{a}\)
\acute{a}\(\acute{a}\)
\grave{a}\(\grave{a}\)
\check{a}\(\check{a}\)
\breve{a}\(\breve{a}\)
\tilde{a}\(\tilde{a}\)
\bar{a}\(\bar{a}\)
\hat{a}\(\hat{a}\)
\widehat{a}\(\widehat{a}\)
\vec{a}\(\vec{a}\)

标准函数

指数\exp_ab=a^b\(\exp_ab=a^b\)
对数\ln c,\lg d = \log e,\log_{10} f\(\ln c,\lg d = \log e,\log_{10} f\)
三角函数\sin a,\cos b,\tan c,\cot d,\sec e,\csc f\(\sin a,\cos b,\tan c,\cot d,\sec e,\csc f\)
反三角函数\arcsin a,\arccos b\,arctan c\(\arcsin a,\arccos b\,arctan c\)
双曲函数\sinh a,\cosh b,\coth c\(\sinh a,\cosh b,\coth c\)
\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n\(\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n\)
反双曲函数\operatorname{argsh}o,  \operatorname{argch}p,  \operatorname{argth}q\(\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q\)
绝对值\left\vert \ S \right\vert\(\left\vert \ S \right\vert\)
最大/小值\min(x,y), \max(x,y)\(\min(x,y), \max(x,y)\)

界限,极限

\min x, \max y, \inf s, \sup t
\(\min x, \max y, \inf s, \sup t\)
\lim u, \liminf v, \limsup w
\(\lim u, \liminf v, \limsup w\)
\lim_{x \to \infty} \frac{1}{n(n+1)}
\(\lim_{x \to \infty} \frac{1}{n(n+1)}\)
\dim p, \deg q, \det m, \ker\phi
\(\dim p, \deg q, \det m, \ker\phi\)

投射

\Pr j, \hom l, \lVert z \rVert, \arg z
\(\Pr j, \hom l, \lVert z \rVert, \arg z\)

微分及导数

dt, \mathrm{d}t, \partial t, \nabla\psi
\(dt, \mathrm{d}t, \partial t, \nabla\psi\)
dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y
\(dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y\)
\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y
\(\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y\)

类字母符号及常数

\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar
\(\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar\)
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \circledR
\(\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \circledR\)

 

模运算

s_k \equiv 0 \pmod{m}sk≡0(modm){\displaystyle s_{k}\equiv 0{\pmod {m}}}
a \bmod bamodb{\displaystyle a{\bmod {b}}}
\gcd(m, n), \operatorname{lcm}(m, n)gcd(m,n),lcm⁡(m,n){\displaystyle \gcd(m,n),\operatorname {lcm} (m,n)}
\mid, \nmid, \shortmid, \nshortmid∣,∤,∣,∤{\displaystyle \mid ,\nmid ,\shortmid ,\nshortmid }

根号

\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}√,2,n,x3+y323{\displaystyle \surd ,{\sqrt {2}},{\sqrt[{n}]{}},{\sqrt[{3}]{\frac {x^{3}+y^{3}}{2}}}}

运算符

+, -, \pm, \mp, \dotplus+,−,±,∓,∔{\displaystyle +,-,\pm ,\mp ,\dotplus }
\times, \div, \divideontimes, /, \backslash×,÷,⋇,/,∖{\displaystyle \times ,\div ,\divideontimes ,/,\backslash }
\cdot, * \ast, \star, \circ, \bullet⋅,∗∗,⋆,∘,∙{\displaystyle \cdot ,*\ast ,\star ,\circ ,\bullet }
\boxplus, \boxminus, \boxtimes, \boxdot⊞,⊟,⊠,⊡{\displaystyle \boxplus ,\boxminus ,\boxtimes ,\boxdot }
\oplus, \ominus, \otimes, \oslash, \odot⊕,⊖,⊗,⊘,⊙{\displaystyle \oplus ,\ominus ,\otimes ,\oslash ,\odot }
\circleddash, \circledcirc, \circledast⊝,⊚,⊛{\displaystyle \circleddash ,\circledcirc ,\circledast }
\bigoplus, \bigotimes, \bigodot⨁,⨂,⨀{\displaystyle \bigoplus ,\bigotimes ,\bigodot }

集合

\{ \}, \O \empty \emptyset, \varnothing{},∅∅∅,∅{\displaystyle \{\},\emptyset \emptyset \emptyset ,\varnothing }
\in, \notin \not\in, \ni, \not\ni∈,∉∉,∋,∌{\displaystyle \in ,\notin \not \in ,\ni ,\not \ni }
\cap, \Cap, \sqcap, \bigcap∩,⋒,⊓,⋂{\displaystyle \cap ,\Cap ,\sqcap ,\bigcap }
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus∪,⋓,⊔,⋃,⨆,⊎,⨄{\displaystyle \cup ,\Cup ,\sqcup ,\bigcup ,\bigsqcup ,\uplus ,\biguplus }
\setminus, \smallsetminus, \times∖,∖,×{\displaystyle \setminus ,\smallsetminus ,\times }
\subset, \Subset, \sqsubset⊂,⋐,⊏{\displaystyle \subset ,\Subset ,\sqsubset }
\supset, \Supset, \sqsupset⊃,⋑,⊐{\displaystyle \supset ,\Supset ,\sqsupset }
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq⊆,⊈,⊊,⊊,⊑{\displaystyle \subseteq ,\nsubseteq ,\subsetneq ,\varsubsetneq ,\sqsubseteq }
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq⊇,⊉,⊋,⊋,⊒{\displaystyle \supseteq ,\nsupseteq ,\supsetneq ,\varsupsetneq ,\sqsupseteq }
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq⫅,⊈,⫋,⫋{\displaystyle \subseteqq ,\nsubseteqq ,\subsetneqq ,\varsubsetneqq }
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq⫆,⊉,⫌,⫌{\displaystyle \supseteqq ,\nsupseteqq ,\supsetneqq ,\varsupsetneqq }

关系符号

=, \ne, \neq, \equiv, \not\equiv=,≠,≠,≡,≢{\displaystyle =,\neq ,\neq ,\equiv ,\not \equiv }
\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, :=≐,≑,=def,:={\displaystyle \doteq ,\doteqdot ,{\overset {\underset {\mathrm {def} }{}}{=}},:=}
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong∼,≁,∽,∼,≃,⋍,≂,≅,≆{\displaystyle \sim ,\nsim ,\backsim ,\thicksim ,\simeq ,\backsimeq ,\eqsim ,\cong ,\ncong }
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto≈,≈,≊,≍,∝,∝{\displaystyle \approx ,\thickapprox ,\approxeq ,\asymp ,\propto ,\varpropto }
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot<,≮,≪,≪̸,⋘,⋘̸,⋖{\displaystyle <,\nless ,\ll ,\not \ll ,\lll ,\not \lll ,\lessdot }
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot>,≯,≫,≫̸,⋙,⋙̸,⋗{\displaystyle >,\ngtr ,\gg ,\not \gg ,\ggg ,\not \ggg ,\gtrdot }
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq≤,≤,⪇,≦,≰,≰,≨,≨{\displaystyle \leq ,\leq ,\lneq ,\leqq ,\nleq ,\nleqq ,\lneqq ,\lvertneqq }
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq≥,≥,⪈,≧,≱,≱,≩,≩{\displaystyle \geq ,\geq ,\gneq ,\geqq ,\ngeq ,\ngeqq ,\gneqq ,\gvertneqq }
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless≶,⋚,⪋,≷,⋛,⪌{\displaystyle \lessgtr ,\lesseqgtr ,\lesseqqgtr ,\gtrless ,\gtreqless ,\gtreqqless }
\leqslant, \nleqslant, \eqslantless⩽,⪇,⪕{\displaystyle \leqslant ,\nleqslant ,\eqslantless }
\geqslant, \ngeqslant, \eqslantgtr⩾,⪈,⪖{\displaystyle \geqslant ,\ngeqslant ,\eqslantgtr }
\lesssim, \lnsim, \lessapprox, \lnapprox≲,⋦,⪅,⪉{\displaystyle \lesssim ,\lnsim ,\lessapprox ,\lnapprox }
\gtrsim, \gnsim, \gtrapprox, \gnapprox≳,⋧,⪆,⪊{\displaystyle \gtrsim ,\gnsim ,\gtrapprox ,\gnapprox }
\prec, \nprec, \preceq, \npreceq, \precneqq≺,⊀,⪯,⋠,⪵{\displaystyle \prec ,\nprec ,\preceq ,\npreceq ,\precneqq }
\succ, \nsucc, \succeq, \nsucceq, \succneqq≻,⊁,⪰,⋡,⪶{\displaystyle \succ ,\nsucc ,\succeq ,\nsucceq ,\succneqq }
\preccurlyeq, \curlyeqprec≼,⋞{\displaystyle \preccurlyeq ,\curlyeqprec }
\succcurlyeq, \curlyeqsucc≽,⋟{\displaystyle \succcurlyeq ,\curlyeqsucc }
\precsim, \precnsim, \precapprox, \precnapprox≾,⋨,⪷,⪹{\displaystyle \precsim ,\precnsim ,\precapprox ,\precnapprox }
\succsim, \succnsim, \succapprox, \succnapprox≿,⋩,⪸,⪺{\displaystyle \succsim ,\succnsim ,\succapprox ,\succnapprox }

≿,⋩,⪸,⪺≿,⋩,⪸,⪺

几何符号

\parallel, \nparallel, \shortparallel, \nshortparallel∥,∦,∥,∦{\displaystyle \parallel ,\nparallel ,\shortparallel ,\nshortparallel }
\perp, \angle, \sphericalangle, \measuredangle, 45^\circ⊥,∠,∢,∡,45∘{\displaystyle \perp ,\angle ,\sphericalangle ,\measuredangle ,45^{\circ }}
\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar◻,◼,⋄,◊◊,⧫,★{\displaystyle \Box ,\blacksquare ,\diamond ,\Diamond \lozenge ,\blacklozenge ,\bigstar }
\bigcirc, \triangle, \bigtriangleup, \bigtriangledown◯,△,△,▽{\displaystyle \bigcirc ,\triangle ,\bigtriangleup ,\bigtriangledown }
\vartriangle, \triangledown△,▽{\displaystyle \vartriangle ,\triangledown }
\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright▴,▾,◂,▸{\displaystyle \blacktriangle ,\blacktriangledown ,\blacktriangleleft ,\blacktriangleright }

逻辑符号

全称量词\forall x\(\forall x\)
存在量词\exists x\(\exists x\)
不存在\nexists x\(\nexists x\)
因此\therefore\(\therefore\)
因为\because\(\because\)
和且\And\(\And\)
逻辑或\lor \vee, \curlyvee, \bigvee\(\lor \vee, \curlyvee, \bigvee\)
逻辑与

\land \wedge, \curlywedge, \bigwedge

\(\land \wedge, \curlywedge, \bigwedge\)
逻辑非\bar{q}, \bar{abc}, \overline{q}, \overline{abc},  \lnot \neg\(\bar{q}, \bar{abc}, \overline{q}, \overline{abc},  \lnot \neg\)
非R\not\operatorname{R}\(\not\operatorname{R}\)
逻辑底/假\bot\(\bot\)
逻辑顶/真\top\(\top\)
推导关系\vdash\(\vdash\)
左垂直双关系\dashv\(\dashv\)
模型关系\vDash\(\vDash\)
强模型关系的反向\Vdash\(\Vdash\)
模型关系 \models\(\models\)
双垂直双关系\Vvdash\(\Vvdash\)
推导关系的否定形式\nvdash\(\nvdash\)

强模型关系

的否定形式

\nVdash\(\nVdash\)
模型关系的否定形式\nvDash\(\nvDash\)
强模型关系的否定形式\nVDash\(\nVDash\)
四个角\ulcorner \urcorner \\       \llcorner \lrcorner\(\ulcorner \urcorner\\ \llcorner \lrcorner\)

箭头

\Rrightarrow, \Lleftarrow\(\Rrightarrow, \Lleftarrow\)
\Rightarrow, \nRightarrow, \Longrightarrow \implies\(\Rightarrow, \nRightarrow, \Longrightarrow \implies\)
\Leftarrow, \nLeftarrow, \Longleftarrow\(\Leftarrow, \nLeftarrow, \Longleftarrow\)
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff\(\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff\)
\Uparrow, \Downarrow, \Updownarrow\(\Uparrow, \Downarrow, \Updownarrow\)
\rightarrow \to, \nrightarrow, \longrightarrow\(\rightarrow \to, \nrightarrow, \longrightarrow\)
\leftarrow \gets, \nleftarrow, \longleftarrow\(\leftarrow \gets, \nleftarrow, \longleftarrow\)
\leftrightarrow, \nleftrightarrow, \longleftrightarrow\(\leftrightarrow, \nleftrightarrow, \longleftrightarrow\)
\uparrow, \downarrow, \updownarrow\(\uparrow, \downarrow, \updownarrow\)
\nearrow, \swarrow, \nwarrow, \searrow\(\nearrow, \swarrow, \nwarrow, \searrow\)
\mapsto, \longmapsto\(\mapsto, \longmapsto\)
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons\(\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons\)
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright\(\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright\)
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft\(\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft\)
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow\(\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow\)

特殊符号

省略号:数学公式中常见的省略号有两种,\ldots 表示与文本底线对齐的省略号,\cdots 表示与文本中线对齐的省略号。

\amalg \P \S \% \dagger \ddagger \ldots \cdots\(\amalg \P \S \% \dagger \ddagger \ldots \cdots\)
\smile \frown \wr \triangleleft \triangleright\(\smile \frown \wr \triangleleft \triangleright\)
\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp\(\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp\)

未分类

\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes\(\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes\)
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq\(\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq\)
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork\(\intercal \barwedge \veebar \doublebarwedge \between \pitchfork\)
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright\(\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright\)
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq\(\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq\)
\not6, \frac{1\not6}{\not64}=\frac{1}{4}\(\not6, \frac{1\not6}{\not64}=\frac{1}{4}\)

上标、下标及积分等

^ 表示上标, _ 表示下标。如果上下标的内容多于一个字符,需要用 {} 将这些内容括成一个整体。上下标可以嵌套,也可以同时使用。

上标a^2a2{\displaystyle a^{2}}
下标a_2a2{\displaystyle a_{2}}
组合a^{2+2}a2+2{\displaystyle a^{2+2}}
a_{i,j}ai,j{\displaystyle a_{i,j}}
结合上下标x_2^3x23{\displaystyle x_{2}^{3}}
前置上下标{}_1^2\!X_3^412X34{\displaystyle {}_{1}^{2}\!X_{3}^{4}}
上下标错开{x_1}^2=x_1 \times x_1x12=x1×x1{\displaystyle {x_{1}}^{2}=x_{1}\times x_{1}}
导数
HTML
x'x′{\displaystyle x'}
导数
PNG
x^\primex′{\displaystyle x^{\prime }}
导数
错误
x\primex′{\displaystyle x\prime }
导数点\dot{x}{\displaystyle {\dot {x}}}
\ddot{y}{\displaystyle {\ddot {y}}}
向量\vec{c}c→{\displaystyle {\vec {c}}}
\overleftarrow{a b}ab←{\displaystyle {\overleftarrow {ab}}}
\overrightarrow{c d}cd→{\displaystyle {\overrightarrow {cd}}}
\overleftrightarrow{a b}ab↔{\displaystyle {\overleftrightarrow {ab}}}
\widehat{e f g}efg^{\displaystyle {\widehat {efg}}}
上弧
(注: 正确应该用 \overarc,但在这里行不通。要用建议的语法作为解决办法。)(使用\overarc时需要引入{arcs}包。)
\overset{\frown} {AB}AB⌢{\displaystyle {\overset {\frown }{AB}}}
上划线\overline{h i j}hij¯{\displaystyle {\overline {hij}}}
下划线\underline{k l m}klm_{\displaystyle {\underline {klm}}}
上括号\overbrace{1+2+\cdots+100}1+2+⋯+100⏞{\displaystyle \overbrace {1+2+\cdots +100} }
\overbrace{ 1+2+\cdots+100 }^{5050}1+2+⋯+100⏞5050{\displaystyle \overbrace {1+2+\cdots +100} ^{5050}}
下括号\underbrace{a+b+\cdots+z}a+b+⋯+z⏟{\displaystyle \underbrace {a+b+\cdots +z} }
\underbrace{ a+b+\cdots+z }_{26}a+b+⋯+z⏟26{\displaystyle \underbrace {a+b+\cdots +z} _{26}}
求和\sum_{k=1}^N k^2∑k=1Nk2{\displaystyle \sum _{k=1}^{N}k^{2}}
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}∑k=1Nk2{\displaystyle {\begin{matrix}\sum _{k=1}^{N}k^{2}\end{matrix}}}
求积\prod_{i=1}^N x_i∏i=1Nxi{\displaystyle \prod _{i=1}^{N}x_{i}}
\begin{matrix} \prod_{i=1}^N x_i \end{matrix}∏i=1Nxi{\displaystyle {\begin{matrix}\prod _{i=1}^{N}x_{i}\end{matrix}}}
上积\coprod_{i=1}^N x_i∐i=1Nxi{\displaystyle \coprod _{i=1}^{N}x_{i}}
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}∐i=1Nxi{\displaystyle {\begin{matrix}\coprod _{i=1}^{N}x_{i}\end{matrix}}}
极限\lim_{n \to \infty}x_nlimn→∞xn{\displaystyle \lim _{n\to \infty }x_{n}}
\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}limn→∞xn{\displaystyle {\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}}
积分\int_{-N}^{N} e^x\, \mathrm{d}x∫−NNexdx{\displaystyle \int _{-N}^{N}e^{x}\,\mathrm {d} x}
\begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix}∫−NNexdx{\displaystyle {\begin{matrix}\int _{-N}^{N}e^{x}\,\mathrm {d} x\end{matrix}}}
双重积分\iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y∬DWdxdy{\displaystyle \iint _{D}^{W}\,\mathrm {d} x\,\mathrm {d} y}
三重积分\iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z∭EVdxdydz{\displaystyle \iiint _{E}^{V}\,\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z}
四重积分\iiiint_{F}^{U} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}t⨌FUdxdydzdt{\displaystyle \iiiint _{F}^{U}\,\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z\,\mathrm {d} t}
闭合的曲线积分曲面积分\oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y∮Cx3dx+4y2dy{\displaystyle \oint _{C}x^{3}\,\mathrm {d} x+4y^{2}\,\mathrm {d} y}
顺时针的闭合曲线积分曲面积分\varointclockwise_{C} 7^x\, \mathrm{d}x + e^y\, \mathrm{d}y∲C⁡7xdx+eydy{\displaystyle \varointclockwise _{C}7^{x}\,\mathrm {d} x+e^{y}\,\mathrm {d} y}
逆时针的闭合曲线积分曲面积分\ointctrclockwise_{C} 7^x\, \mathrm{d}x + e^y\, \mathrm{d}y∳C⁡7xdx+eydy{\displaystyle \ointctrclockwise _{C}7^{x}\,\mathrm {d} x+e^{y}\,\mathrm {d} y}
闭合面积分\oiint_{S} \,f\mathrm{d}A∯S⁡7xfdA{\displaystyle \oiint _{S}7^{x}\,f\mathrm {d} A}
闭合体积分\oiiint_{E}\,f\mathrm{d}V∰E⁡7xfdV{\displaystyle \oiiint _{E}7^{x}\,f\mathrm {d} V}
交集\bigcap_1^{n} p⋂1np{\displaystyle \bigcap _{1}^{n}p}
并集\bigcup_1^{k} p⋃1kp{\displaystyle \bigcup _{1}^{k}p}

 

分数

通常使用 \frac {分子} {分母} 命令产生一个分数,分数可嵌套。 
便捷情况可直接输入 \frac ab 来快速生成一个 \(\frac ab\) 。 
如果分式很复杂,亦可使用 分子 \over 分母 命令,此时分数仅有一层。

 

分数\frac{2}{4}=0.5\(\frac{2}{4}=0.5\)
小型分数\tfrac{2}{4} = 0.5\(\tfrac{2}{4} = 0.5\)
连分式(大型嵌套分式)\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a\(\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a\)
大型不嵌套分式\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a\(\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a\)
二项式系数\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}\(\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}\)
小型二项式系数\tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}\(\tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}\)
大型二项式系数\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}\(\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}\)
在以e为底的指数函数、极限和积分中尽量不要使用 \frac 符号:它会使整段函数看起来很怪,而且可能产生歧义。也正是因此它在专业数学排版中几乎从不出现。 
横着写这些分式,中间使用斜线间隔 / (用斜线代替分数线)。
\begin{array}{cc}
	\mathrm{Bad} & \mathrm{Better} \\
	\hline \\
	e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}&
		e^{i\pi/2} \\
	\int_{-\frac\pi2}^\frac\pi2 \sin x\,dx &
		\int_{-\pi/2}^{\pi/2}\sin x\,dx \\
\end{array}
\(\begin{array}{cc} \mathrm{Bad} & \mathrm{Better} \\ \hline \\ e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\ \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\ \end{array}\)

矩阵、条件表达式、方程组

语法:

\begin{类型}
公式内容
\end{类型}

类型可以是:矩阵 matrix pmatrix bmatrix Bmatrix vmatrix Vmatrix、条件表达式 cases、多行对齐方程式 aligned、数组 array

在公式内容中:在每一行中插入 & 来指定需要对齐的内容,在每行结尾处使用 \\ 换行

无框矩阵

在开头使用 begin{matrix},在结尾使用 end{matrix},在中间插入矩阵元素,每个元素之间插入 & ,并在每行结尾处使用 \\

\begin{matrix} 
	x & y \\ 
	z & v 
\end{matrix}
\(\begin{matrix} x & y \\ z & v \end{matrix}\)

有框矩阵

在开头将 matrix 替换为 pmatrix bmatrix Bmatrix vmatrix Vmatrix

使用 \cdots ⋯⋯ , \ddots ⋱⋱ , \vdots ⋮⋮ 来输入省略符号

\begin{vmatrix}
	x & y \\
	z & v
\end{vmatrix}
\(\begin{vmatrix} x & y \\ z & v \end{vmatrix}\)
\begin{Vmatrix}
	x & y \\
	z & v
\end{Vmatrix}
\(\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}\)
\begin{bmatrix}
	0      & \cdots & 0      \\
	\vdots & \ddots & \vdots \\
	0      & \cdots & 0
\end{bmatrix}
\(\begin{bmatrix} 0      & \cdots & 0      \\ \vdots & \ddots & \vdots \\ 0      & \cdots & 0 \end{bmatrix}\)
\begin{Bmatrix}
	x & y \\
	z & v
\end{Bmatrix}		
\(\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}\)
\begin{pmatrix}
	x & y \\
	z & v
\end{pmatrix}
\(\begin{pmatrix} x & y \\ z & v \end{pmatrix}\)
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
\(\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)\)

条件表达式

f(n) = 
\begin{cases}  
	n/2,  & \text{if }n\text{ is even} \\
	3n+1, & \text{if }n\text{ is odd} 
 \end{cases}
\(f(n) = \begin{cases}  n/2,  & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases}\)

多行等式、同余式

人们经常想要一列整齐且居中的方程式序列。使用 \begin{aligned}…\end{aligned}

\begin{aligned}
f(x) & = (m+n)^2 \\
     & = m^2+2mn+n^2 \\
\end{aligned}
\(\begin{aligned} f(x) & = (m+n)^2 \\      & = m^2+2mn+n^2 \\ \end{aligned}\)
\begin{aligned} 
	3^{6n+3}+4^{6n+3}  
		& \equiv (3^3)^{2n+1}+(4^3)^{2n+1}\\   
		& \equiv 27^{2n+1}+64^{2n+1}\\   
		& \equiv 27^{2n+1}+(-27)^{2n+1}\\  
		& \equiv 27^{2n+1}-27^{2n+1}\\ 
		& \equiv 0 \pmod{91}\\ 
\end{aligned}
\(\begin{aligned} 3^{6n+3}+4^{6n+3}  & \equiv (3^3)^{2n+1}+(4^3)^{2n+1}\\   & \equiv 27^{2n+1}+64^{2n+1}\\   & \equiv 27^{2n+1}+(-27)^{2n+1}\\  & \equiv 27^{2n+1}-27^{2n+1}\\ & \equiv 0 \pmod{91}\\ \end{aligned}\)
\begin{alignedat}{3} 
	f(x) & = (m-n)^2 \\ 
	f(x) & = (-m+n)^2 \\      
		& = m^2-2mn+n^2 \\ 
\end{alignedat}
\(\begin{alignedat}{3} f(x) & = (m-n)^2 \\ f(x) & = (-m+n)^2 \\      & = m^2-2mn+n^2 \\ \end{alignedat}\)

方程组

\begin{cases} 
	3x + 5y +  z \\ 
	7x - 2y + 4z \\ 
	-6x + 3y + 2z 
\end{cases}
\(\begin{cases} 3x + 5y +  z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}\)
\left
	\{\begin{aligned} 
		3x + 5y +  z \\
		7x - 2y + 4z \\
		-6x + 3y + 2z 
	\end{aligned}
\right.
\(\left\{\begin{aligned} 3x + 5y +  z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{aligned}\right.\)

数组与表格

通常,一个格式化后的表格比单纯的文字或排版后的文字更具有可读性。数组和表格均以 \begin{array} 开头,并在其后定义列数及每一列的文本对齐属性,c l r 分别代表居中、左对齐及右对齐。若需要插入垂直分割线,在定义式中插入 | ,若要插入水平分割线,在下一行输入前插入 \hline 。与矩阵相似,每行元素间均须要插入 & ,每行元素以 \\ 结尾,最后以 \end{array} 结束数组。

\begin{array}{c|lcr}
n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}	
\(\begin{array}{c|lcr} n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \end{array}\)
\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z 
\end{array}
\(\begin{array}{lcl} z        & = & a \\ f(x,y,z) & = & x + y + z  \end{array}\)
\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z    
\end{array}
\(\begin{array}{lcr} z        & = & a \\ f(x,y,z) & = & x + y + z     \end{array}\)
\begin{array}{ccc}
a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
\(\begin{array}{ccc} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array}\)
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
\(\begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array}\)

嵌套数组或表格

多个数组/表格可 互相嵌套 并组成一组数组/一组表格。 

\begin{array}{c}
    \begin{array}{cc}
        \begin{array}{c|cccc}
        \text{min} & 0 & 1 & 2 & 3\\
        \hline
        0 & 0 & 0 & 0 & 0\\
        1 & 0 & 1 & 1 & 1\\
        2 & 0 & 1 & 2 & 2\\
        3 & 0 & 1 & 2 & 3
        \end{array}
    &
        \begin{array}{c|cccc}
        \text{max}&0&1&2&3\\
        \hline
        0 & 0 & 1 & 2 & 3\\
        1 & 1 & 1 & 2 & 3\\
        2 & 2 & 2 & 2 & 3\\
        3 & 3 & 3 & 3 & 3
        \end{array}
    \end{array}
    \\
        \begin{array}{c|cccc}
        \Delta&0&1&2&3\\
        \hline
        0 & 0 & 1 & 2 & 3\\
        1 & 1 & 0 & 1 & 2\\
        2 & 2 & 1 & 0 & 1\\
        3 & 3 & 2 & 1 & 0
        \end{array}
\end{array}
\(\begin{array}{c}     \begin{array}{cc}         \begin{array}{c|cccc}         \text{min} & 0 & 1 & 2 & 3\\         \hline         0 & 0 & 0 & 0 & 0\\         1 & 0 & 1 & 1 & 1\\         2 & 0 & 1 & 2 & 2\\         3 & 0 & 1 & 2 & 3         \end{array}     &         \begin{array}{c|cccc}         \text{max}&0&1&2&3\\         \hline         0 & 0 & 1 & 2 & 3\\         1 & 1 & 1 & 2 & 3\\         2 & 2 & 2 & 2 & 3\\         3 & 3 & 3 & 3 & 3         \end{array}     \end{array}     \\         \begin{array}{c|cccc}         \Delta&0&1&2&3\\         \hline         0 & 0 & 1 & 2 & 3\\         1 & 1 & 0 & 1 & 2\\         2 & 2 & 1 & 0 & 1\\         3 & 3 & 2 & 1 & 0         \end{array} \end{array}\)

用数组实现带分割符号的矩阵

其中 cc|c 代表在一个三列矩阵中的第二和第三列之间插入分割线。

\left[
    \begin{array}{cc|c}
      1&2&3\\
      4&5&6
    \end{array}
\right]
\(\left[     \begin{array}{cc|c}       1&2&3\\       4&5&6     \end{array} \right]\)

字体

希腊字母

输入 \小写希腊字母英文全称\首字母大写希腊字母英文全称 来分别输入小写和大写希腊字母。

\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta
\(\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta\)
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi
\(\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi\)
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega
\(\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega\)
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta
\(\alpha \beta \gamma \delta \epsilon \zeta \eta \theta\)
\iota \kappa \lambda \mu \nu \omicron \xi \pi
\(\iota \kappa \lambda \mu \nu \omicron \xi \pi\)
\rho \sigma \tau \upsilon \phi \chi \psi \omega
\(\rho \sigma \tau \upsilon \phi \chi \psi \omega\)

部分字母有变量专用形式,以 \var- 开头。

\varepsilon \digamma \varkappa \varpi
\(\varepsilon \digamma \varkappa \varpi\)
\varrho \varsigma \vartheta \varphi
\(\varrho \varsigma \vartheta \varphi\)

希伯来符号

\aleph \beth \gimel \daleth
\(\aleph \beth \gimel \daleth\)

部分字体的简称

若要对公式的某一部分字符进行字体转换,可以用 {\字体 {需转换的部分字符}} 命令,其中 \字体 部分可以参照下表选择合适的字体。一般情况下,公式默认为意大利体 italicitalic 。

|\rm|罗马体|SampleSample|\cal|花体|SAMPLESAMPLE|\(|\rm|罗马体|SampleSample|\cal|花体|SAMPLESAMPLE|\)
|\it|意大利体|SampleSample|\Bbb|黑板粗体|SAMPLESAMPLE|\(|\it|意大利体|SampleSample|\Bbb|黑板粗体|SAMPLESAMPLE|\)
|\bf|粗体|SampleSample|\mit|数学斜体|SAMPLESAMPLE|\(|\bf|粗体|SampleSample|\mit|数学斜体|SAMPLESAMPLE|\)
|\sf|等线体|SampleSample|\scr|手写体|SAMPLESAMPLE|\(|\sf|等线体|SampleSample|\scr|手写体|SAMPLESAMPLE|\)
|\tt|打字机体|SampleSample|\frak|旧德式字体|SampleSample|\(|\tt|打字机体|SampleSample|\frak|旧德式字体|SampleSample|\)

所有字体

希腊字母
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta\(\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta\)
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi\(\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi\)
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega\(\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega\)
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta\(\alpha \beta \gamma \delta \epsilon \zeta \eta \theta\)
\iota \kappa \lambda \mu \nu \xi \omicron \pi\(\iota \kappa \lambda \mu \nu \xi \omicron \pi\)
\rho \sigma \tau \upsilon \phi \chi \psi \omega\(\rho \sigma \tau \upsilon \phi \chi \psi \omega\)
\varepsilon \digamma \varkappa \varpi\(\varepsilon \digamma \varkappa \varpi\)
\varrho \varsigma \vartheta \varphi\(\varrho \varsigma \vartheta \varphi\)
希伯来字符
\aleph \beth \gimel \daleth\(\aleph \beth \gimel \daleth\)
黑板报粗体
\mathbb{ABCDEFGHI}\(\mathbb{ABCDEFGHI}\)
\mathbb{JKLMNOPQR}\(\mathbb{JKLMNOPQR}\)
\mathbb{STUVWXYZ}\(\mathbb{STUVWXYZ}\)
粗体
\mathbf{ABCDEFGHI}\(\mathbf{ABCDEFGHI}\)
\mathbf{JKLMNOPQR}\(\mathbf{JKLMNOPQR}\)
\mathbf{STUVWXYZ}\(\mathbf{STUVWXYZ}\)
\mathbf{abcdefghijklm}\(\mathbf{abcdefghijklm}\)
\mathbf{nopqrstuvwxyz}\(\mathbf{nopqrstuvwxyz}\)
\mathbf{0123456789}\(\mathbf{0123456789}\)
粗体希腊字母
\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}\(\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}\)
\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}\(\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}\)
\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}\(\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}\)
\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta}\(\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta}\)
\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho}\(\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho}\)
\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega}\(\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega}\)
\boldsymbol{\varepsilon\digamma\varkappa\varpi}\(\boldsymbol{\varepsilon\digamma\varkappa\varpi}\)
\boldsymbol{\varrho\varsigma\vartheta\varphi}\(\boldsymbol{\varrho\varsigma\vartheta\varphi}\)
斜体(拉丁字母预设)
\mathit{0123456789}\(\mathit{0123456789}\)
斜体希腊字母(小写字母预设)
\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}\(\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}\)
\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}\(\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}\)
\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}\(\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}\)
罗马体
\mathrm{ABCDEFGHI}\(\mathrm{ABCDEFGHI}\)
\mathrm{JKLMNOPQR}\(\mathrm{JKLMNOPQR}\)
\mathrm{STUVWXYZ}\(\mathrm{STUVWXYZ}\)
\mathrm{abcdefghijklm}\(\mathrm{abcdefghijklm}\)
\mathrm{nopqrstuvwxyz}\(\mathrm{nopqrstuvwxyz}\)
\mathrm{0123456789}\(\mathrm{0123456789}\)
无衬线体
\mathsf{ABCDEFGHI}\(\mathsf{ABCDEFGHI}\)
\mathsf{JKLMNOPQR}\(\mathsf{JKLMNOPQR}\)
\mathsf{STUVWXYZ}\(\mathsf{STUVWXYZ}\)
\mathsf{abcdefghijklm}\(\mathsf{abcdefghijklm}\)
\mathsf{nopqrstuvwxyz}\(\mathsf{nopqrstuvwxyz}\)
\mathsf{0123456789}\(\mathsf{0123456789}\)
\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta}\(\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta}\)
\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho}\(\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho}\)
\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}\(\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}\)
手写体/花体
\mathcal{ABCDEFGHI}\(\mathcal{ABCDEFGHI}\)
\mathcal{JKLMNOPQR}\(\mathcal{JKLMNOPQR}\)
\mathcal{STUVWXYZ}\(\mathcal{STUVWXYZ}\)
Fraktur体
\mathfrak{ABCDEFGHI}\(\mathfrak{ABCDEFGHI}\)
\mathfrak{JKLMNOPQR}\(\mathfrak{JKLMNOPQR}\)
\mathfrak{STUVWXYZ}\(\mathfrak{STUVWXYZ}\)
\mathfrak{abcdefghijklm}\(\mathfrak{abcdefghijklm}\)
\mathfrak{nopqrstuvwxyz}\(\mathfrak{nopqrstuvwxyz}\)
\mathfrak{0123456789}\(\mathfrak{0123456789}\)
小型手写体
{\scriptstyle\text{abcdefghijklm}}\({\scriptstyle\text{abcdefghijklm}}\)

 

注释文本

使用 \text {文字} 来添加注释文本(注释文本不会被识别为公式,不用斜体显示)。\text {文字}中仍可以使用 $公式$ 插入其它公式。

f(n)= \begin{cases}
n/2, & \text {if $n$ is even} \\
3n+1, &\text{if $n$ is odd}
\end{cases} 
\(f(n)= \begin{cases} n/2, & \text {if $n$ is even} \\ 3n+1, &\text{if $n$ is odd} \end{cases}\)

 

括号

()[]| 表示符号本身,使用 \{\} 来表示 {}

使用 \left\right 来创建自动匹配高度的 (圆括号),[方括号] 和 {花括号} 。

如果括号只有一边,要用 \left.\right. 匹配另一边。

短括号\frac{1}{2}\(\frac{1}{2}\)
长括号\left(\frac{1}{2} \right)\(\left(\frac{1}{2} \right)\)
圆括号,小括号\left( \frac{a}{b} \right)\(\left( \frac{a}{b} \right)\)
方括号,中括号\left[ \frac{a}{b} \right]\(\left[ \frac{a}{b} \right]\)
花括号,大括号\left\{ \frac{a}{b} \right\}\(\left\{ \frac{a}{b} \right\}\)
角括号\left \langle \frac{a}{b} \right \rangle\(\left \langle \frac{a}{b} \right \rangle\)
单竖线,绝对值\left| \frac{a}{b} \right|\(\left| \frac{a}{b} \right|\)
双竖线,范数\left \| \frac{a}{b} \right \|\(\left \| \frac{a}{b} \right \|\)
高斯符号\left \lbrack \frac{a}{b} \right \rbrack\(\left \lbrack \frac{a}{b} \right \rbrack\)
取底符号\left \lfloor \frac{a}{b} \right \rfloor\(\left \lfloor \frac{a}{b} \right \rfloor\)
取顶符号\left \lceil \frac{c}{d} \right \rceil\(\left \lceil \frac{c}{d} \right \rceil\)
斜线与反斜线\left / \frac{a}{b} \right \backslash\(\)\(\left / \frac{a}{b} \right \backslash\)
上下箭头\left \uparrow \frac{a}{b} \right \downarrow\(\left \uparrow \frac{a}{b} \right \downarrow\)
\left \Uparrow \frac{a}{b} \right \Downarrow\(\left \Uparrow \frac{a}{b} \right \Downarrow\)
\left \updownarrow \frac{a}{b} \right \Updownarrow\(\left \updownarrow \frac{a}{b} \right \Updownarrow\)
混合括号\left [ 0,1 \right )
\left \langle \psi \right |
\(\left [ 0,1 \right ) \left \langle \psi \right |\)
单左括号\left \{ \frac{a}{b} \right .\(\left \{ \frac{a}{b} \right .\)
单右括号\left . \frac{a}{b} \right \}\(\left . \frac{a}{b} \right \}\)

备注:

可以使用 \big, \Big, \bigg, \Bigg 控制括号的大小,

比如代码\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg )

\(\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg )\)

 

空格

注意 TeX 能够自动处理大多数的空格,但是您有时候需要自己来控制。

2个quad空格\alpha\qquad\betaαβ{\displaystyle \alpha \qquad \beta }2m {\displaystyle 2m\ }
quad空格\alpha\quad\betaαβ{\displaystyle \alpha \quad \beta }m {\displaystyle m\ }
大空格\alpha\ \betaα β{\displaystyle \alpha \ \beta }m3{\displaystyle {\frac {m}{3}}}
中等空格\alpha\;\betaαβ{\displaystyle \alpha \;\beta }2m7{\displaystyle {\frac {2m}{7}}}
小空格\alpha\,\betaαβ{\displaystyle \alpha \,\beta }m6{\displaystyle {\frac {m}{6}}}
没有空格\alpha\betaαβ {\displaystyle \alpha \beta \ }0 {\displaystyle 0\ }
紧贴\alpha\!\betaαβ{\displaystyle \alpha \!\beta }−m6{\displaystyle -{\frac {m}{6}}}

颜色

高亮

使用 \bbox[底色, (可选)边距, (可选)边框 border: 框宽度 框类型 框颜色] 命令来高亮一行公式。
底色和框颜色支持详见“更改文字颜色”,边距及框宽度支持 绝对像素 px相对大小 em,框类型支持 实线 solid虚线 dashed

这里似乎不支持。

Cmd Markdown 公式指导手册里是这样写的:

使用 \color{颜色}{文字} 来更改特定的文字颜色。 
更改文字颜色 需要浏览器支持 ,如果浏览器不知道你所需的颜色,那么文字将被渲染为黑色。

对于较旧的浏览器(HTML4与CSS2),以下颜色是被支持的:

输入显示输入显示
black

texttext

grey

texttext

silver

texttext

white

texttext

maroon

texttext

red

texttext

yellow

texttext

lime

texttext

olive

texttext

green

texttext

teal

texttext

auqa

texttext

blue

texttext

navy

texttext

purple

texttext

fuchsia

texttext

对于较新的浏览器(HTML5与CSS3),额外的124种颜色将被支持:

输入 \color {#rgb} {text} 来自定义更多的颜色,其中 #rgbr g b 可输入 0-9a-f 来表示红色、绿色和蓝色的纯度(饱和度)。

\begin{array}{|rrrrrrrr|}\hline
\verb+#000+ & \color{#000}{text} &  
\verb+#00F+ & \color{#00F}{text}   \\
\verb+#0F0+ & \color{#0F0}{text} 
&  \verb+#0FF+ & \color{#0FF}{text}\\
\verb+#F00+ & \color{#F00}{text} &  
\verb+#F0F+ & \color{#F0F}{text}   \\
\verb+#FF0+ & \color{#FF0}{text} 
&  \verb+#FFF+ & \color{#FFF}{text}\\
\hline
\end{array}
\(\begin{array}{|rrrrrrrr|}\hline \verb+#000+ & \color{#000}{text} &   \verb+#00F+ & \color{#00F}{text}   \\ \verb+#0F0+ & \color{#0F0}{text}  &  \verb+#0FF+ & \color{#0FF}{text}\\ \verb+#F00+ & \color{#F00}{text} &   \verb+#F0F+ & \color{#F0F}{text}   \\ \verb+#FF0+ & \color{#FF0}{text}  &  \verb+#FFF+ & \color{#FFF}{text}\\ \hline \end{array}\)
\begin{array}{|rrrrrrrr|}
\hline
\verb+#000+ & \color{#000}{text} & \verb+#005+ & \color{#005}{text} & \verb+#00A+ & \color{#00A}{text} & \verb+#00F+ & \color{#00F}{text}  \\
\verb+#500+ & \color{#500}{text} & \verb+#505+ & \color{#505}{text} & \verb+#50A+ & \color{#50A}{text} & \verb+#50F+ & \color{#50F}{text}  \\
\verb+#A00+ & \color{#A00}{text} & \verb+#A05+ & \color{#A05}{text} & \verb+#A0A+ & \color{#A0A}{text} & \verb+#A0F+ & \color{#A0F}{text}  \\
\verb+#F00+ & \color{#F00}{text} & \verb+#F05+ & \color{#F05}{text} & \verb+#F0A+ & \color{#F0A}{text} & \verb+#F0F+ & \color{#F0F}{text}  \\
\hline
\verb+#080+ & \color{#080}{text} & \verb+#085+ & \color{#085}{text} & \verb+#08A+ & \color{#08A}{text} & \verb+#08F+ & \color{#08F}{text}  \\
\verb+#580+ & \color{#580}{text} & \verb+#585+ & \color{#585}{text} & \verb+#58A+ & \color{#58A}{text} & \verb+#58F+ & \color{#58F}{text}  \\
\verb+#A80+ & \color{#A80}{text} & \verb+#A85+ & \color{#A85}{text} & \verb+#A8A+ & \color{#A8A}{text} & \verb+#A8F+ & \color{#A8F}{text}  \\
\verb+#F80+ & \color{#F80}{text} & \verb+#F85+ & \color{#F85}{text} & \verb+#F8A+ & \color{#F8A}{text} & \verb+#F8F+ & \color{#F8F}{text}  \\
\hline
\verb+#0F0+ & \color{#0F0}{text} & \verb+#0F5+ & \color{#0F5}{text} & \verb+#0FA+ & \color{#0FA}{text} & \verb+#0FF+ & \color{#0FF}{text}  \\
\verb+#5F0+ & \color{#5F0}{text} & \verb+#5F5+ & \color{#5F5}{text} & \verb+#5FA+ & \color{#5FA}{text} & \verb+#5FF+ & \color{#5FF}{text}  \\
\verb+#AF0+ & \color{#AF0}{text} & \verb+#AF5+ & \color{#AF5}{text} & \verb+#AFA+ & \color{#AFA}{text} & \verb+#AFF+ & \color{#AFF}{text}  \\
\verb+#FF0+ & \color{#FF0}{text} & \verb+#FF5+ & \color{#FF5}{text} & \verb+#FFA+ & \color{#FFA}{text} & \verb+#FFF+ & \color{#FFF}{text}  \\
\hline
\end{array}
\(\begin{array}{|rrrrrrrr|} \hline \verb+#000+ & \color{#000}{text} & \verb+#005+ & \color{#005}{text} & \verb+#00A+ & \color{#00A}{text} & \verb+#00F+ & \color{#00F}{text}  \\ \verb+#500+ & \color{#500}{text} & \verb+#505+ & \color{#505}{text} & \verb+#50A+ & \color{#50A}{text} & \verb+#50F+ & \color{#50F}{text}  \\ \verb+#A00+ & \color{#A00}{text} & \verb+#A05+ & \color{#A05}{text} & \verb+#A0A+ & \color{#A0A}{text} & \verb+#A0F+ & \color{#A0F}{text}  \\ \verb+#F00+ & \color{#F00}{text} & \verb+#F05+ & \color{#F05}{text} & \verb+#F0A+ & \color{#F0A}{text} & \verb+#F0F+ & \color{#F0F}{text}  \\ \hline \verb+#080+ & \color{#080}{text} & \verb+#085+ & \color{#085}{text} & \verb+#08A+ & \color{#08A}{text} & \verb+#08F+ & \color{#08F}{text}  \\ \verb+#580+ & \color{#580}{text} & \verb+#585+ & \color{#585}{text} & \verb+#58A+ & \color{#58A}{text} & \verb+#58F+ & \color{#58F}{text}  \\ \verb+#A80+ & \color{#A80}{text} & \verb+#A85+ & \color{#A85}{text} & \verb+#A8A+ & \color{#A8A}{text} & \verb+#A8F+ & \color{#A8F}{text}  \\ \verb+#F80+ & \color{#F80}{text} & \verb+#F85+ & \color{#F85}{text} & \verb+#F8A+ & \color{#F8A}{text} & \verb+#F8F+ & \color{#F8F}{text}  \\ \hline \verb+#0F0+ & \color{#0F0}{text} & \verb+#0F5+ & \color{#0F5}{text} & \verb+#0FA+ & \color{#0FA}{text} & \verb+#0FF+ & \color{#0FF}{text}  \\ \verb+#5F0+ & \color{#5F0}{text} & \verb+#5F5+ & \color{#5F5}{text} & \verb+#5FA+ & \color{#5FA}{text} & \verb+#5FF+ & \color{#5FF}{text}  \\ \verb+#AF0+ & \color{#AF0}{text} & \verb+#AF5+ & \color{#AF5}{text} & \verb+#AFA+ & \color{#AFA}{text} & \verb+#AFF+ & \color{#AFF}{text}  \\ \verb+#FF0+ & \color{#FF0}{text} & \verb+#FF5+ & \color{#FF5}{text} & \verb+#FFA+ & \color{#FFA}{text} & \verb+#FFF+ & \color{#FFF}{text}  \\ \hline \end{array}\)

维基百科的数学公式教程里是这样写的:

语法:{\color{颜色}表达式}

作者实测:在部分浏览器中,上面的语法可能是错误的(只将表达式的第一个字符着色),\color{颜色}{文字}的语法才是正确的。例如:

{\color{Red}abc}显示abcabc 
\color{Red}{abc}显示abcabc

支持色调表:这里也能看到当前哪些颜色是支持的

{\displaystyle \color {Apricot}{\text{Apricot}}}Aquamarine{\displaystyle \color {Aquamarine}{\text{Aquamarine}}}Bittersweet{\displaystyle \color {Bittersweet}{\text{Bittersweet}}}Black{\displaystyle \color {Black}{\text{Black}}}
Blue{\displaystyle \color {Blue}{\text{Blue}}}BlueGreen{\displaystyle \color {BlueGreen}{\text{BlueGreen}}}BlueViolet{\displaystyle \color {BlueViolet}{\text{BlueViolet}}}BrickRed{\displaystyle \color {BrickRed}{\text{BrickRed}}}
Brown{\displaystyle \color {Brown}{\text{Brown}}}BurntOrange{\displaystyle \color {BurntOrange}{\text{BurntOrange}}}CadetBlue{\displaystyle \color {CadetBlue}{\text{CadetBlue}}}CarnationPink{\displaystyle \color {CarnationPink}{\text{CarnationPink}}}
Cerulean{\displaystyle \color {Cerulean}{\text{Cerulean}}}CornflowerBlue{\displaystyle \color {CornflowerBlue}{\text{CornflowerBlue}}}Cyan{\displaystyle \color {Cyan}{\text{Cyan}}}Dandelion{\displaystyle \color {Dandelion}{\text{Dandelion}}}
DarkOrchid{\displaystyle \color {DarkOrchid}{\text{DarkOrchid}}}Emerald{\displaystyle \color {Emerald}{\text{Emerald}}}ForestGreen{\displaystyle \color {ForestGreen}{\text{ForestGreen}}}Fuchsia{\displaystyle \color {Fuchsia}{\text{Fuchsia}}}
Goldenrod{\displaystyle \color {Goldenrod}{\text{Goldenrod}}}Gray{\displaystyle \color {Gray}{\text{Gray}}}Green{\displaystyle \color {Green}{\text{Green}}}GreenYellow{\displaystyle \color {GreenYellow}{\text{GreenYellow}}}
JungleGreen{\displaystyle \color {JungleGreen}{\text{JungleGreen}}}Lavender{\displaystyle \color {Lavender}{\text{Lavender}}}LimeGreen{\displaystyle \color {LimeGreen}{\text{LimeGreen}}}Magenta{\displaystyle \color {Magenta}{\text{Magenta}}}
Mahogany{\displaystyle \color {Mahogany}{\text{Mahogany}}}Maroon{\displaystyle \color {Maroon}{\text{Maroon}}}Melon{\displaystyle \color {Melon}{\text{Melon}}}MidnightBlue{\displaystyle \color {MidnightBlue}{\text{MidnightBlue}}}
Mulberry{\displaystyle \color {Mulberry}{\text{Mulberry}}}NavyBlue{\displaystyle \color {NavyBlue}{\text{NavyBlue}}}OliveGreen{\displaystyle \color {OliveGreen}{\text{OliveGreen}}}Orange{\displaystyle \color {Orange}{\text{Orange}}}
OrangeRed{\displaystyle \color {OrangeRed}{\text{OrangeRed}}}Orchid{\displaystyle \color {Orchid}{\text{Orchid}}}Peach{\displaystyle \color {Peach}{\text{Peach}}}Periwinkle{\displaystyle \color {Periwinkle}{\text{Periwinkle}}}
PineGreen{\displaystyle \color {PineGreen}{\text{PineGreen}}}Plum{\displaystyle \color {Plum}{\text{Plum}}}ProcessBlue{\displaystyle \color {ProcessBlue}{\text{ProcessBlue}}}Purple{\displaystyle \color {Purple}{\text{Purple}}}
RawSienna{\displaystyle \color {RawSienna}{\text{RawSienna}}}Red{\displaystyle \color {Red}{\text{Red}}}RedOrange{\displaystyle \color {RedOrange}{\text{RedOrange}}}RedViolet{\displaystyle \color {RedViolet}{\text{RedViolet}}}
Rhodamine{\displaystyle \color {Rhodamine}{\text{Rhodamine}}}RoyalBlue{\displaystyle \color {RoyalBlue}{\text{RoyalBlue}}}RoyalPurple{\displaystyle \color {RoyalPurple}{\text{RoyalPurple}}}RubineRed{\displaystyle \color {RubineRed}{\text{RubineRed}}}
Salmon{\displaystyle \color {Salmon}{\text{Salmon}}}SeaGreen{\displaystyle \color {SeaGreen}{\text{SeaGreen}}}Sepia{\displaystyle \color {Sepia}{\text{Sepia}}}SkyBlue{\displaystyle \color {SkyBlue}{\text{SkyBlue}}}
SpringGreen{\displaystyle \color {SpringGreen}{\text{SpringGreen}}}Tan{\displaystyle \color {Tan}{\text{Tan}}}TealBlue{\displaystyle \color {TealBlue}{\text{TealBlue}}}Thistle{\displaystyle \color {Thistle}{\text{Thistle}}}
Turquoise{\displaystyle \color {Turquoise}{\text{Turquoise}}}Violet{\displaystyle \color {Violet}{\text{Violet}}}VioletRed{\displaystyle \color {VioletRed}{\text{VioletRed}}}White{\displaystyle \color {White}{\text{White}}}
WildStrawberry{\displaystyle \color {WildStrawberry}{\text{WildStrawberry}}}Yellow{\displaystyle \color {Yellow}{\text{Yellow}}}YellowGreen{\displaystyle \color {YellowGreen}{\text{YellowGreen}}}YellowOrange{\displaystyle \color {YellowOrange}{\text{YellowOrange}}}

*注︰输入时第一个字母必需以大写输入,如\color{OliveGreen}

例子

{\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1}

\({\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1}\)

x_{\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a}

\(x_{\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a}\)

 


参考

  1. Cmd Markdown 公式指导手册

  2. 维基百科:数学公式

“您的支持是我持续分享的动力”

微信收款码
微信
支付宝收款码
支付宝

目录